Title of article :
On the number of pentagons in triangle-free graphs
Author/Authors :
Hatami، نويسنده , , Hamed and Hladk?، نويسنده , , Jan and Kr?l?، نويسنده , , Daniel and Norine، نويسنده , , Serguei and Razborov، نويسنده , , Alexander، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
Using the formalism of flag algebras, we prove that every triangle-free graph G with n vertices contains at most ( n / 5 ) 5 cycles of length five. Moreover, the equality is attained only when n is divisible by five and G is the balanced blow-up of the pentagon. We also compute the maximal number of pentagons and characterize extremal graphs in the non-divisible case provided n is sufficiently large. This settles a conjecture made by Erdős in 1984.
Keywords :
Pentagon density , triangle-free graphs , extremal graph theory
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A