Title of article :
Hyperovals of when q is even
Author/Authors :
Cossidente، نويسنده , , Antonio and King، نويسنده , , Oliver H. and Marino، نويسنده , , Giuseppe، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
10
From page :
1131
To page :
1140
Abstract :
For even q, a group G isomorphic to PSL ( 2 , q ) stabilizes a Baer conic inside a symplectic subquadrangle W ( 3 , q ) of H ( 3 , q 2 ) . In this paper the action of G on points and lines of H ( 3 , q 2 ) is investigated. A construction is given of an infinite family of hyperovals of size 2 ( q 3 − q ) of H ( 3 , q 2 ) , with each hyperoval having the property that its automorphism group contains G. Finally it is shown that the hyperovals constructed are not isomorphic to known hyperovals.
Keywords :
Hermitian surface , hyperoval , Symplectic subquadrangle
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2013
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531905
Link To Document :
بازگشت