Title of article
Permutations all of whose patterns of a given length are distinct
Author/Authors
Hegarty، نويسنده , , Peter، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2013
Pages
9
From page
1663
To page
1671
Abstract
For each integer k ⩾ 2 , let F ( k ) denote the largest n for which there exists a permutation σ ∈ S n all of whose patterns of length k are distinct. We prove that F ( k ) = k + ⌊ 2 k − 3 ⌋ + ϵ k , where ε k ∈ { − 1 , 0 } for every k. We conjecture an even more precise result, based on data for small values of k.
Keywords
Tilted checkerboard permutation , k-Separator , Permutation pattern
Journal title
Journal of Combinatorial Theory Series A
Serial Year
2013
Journal title
Journal of Combinatorial Theory Series A
Record number
1531938
Link To Document