Title of article :
Transition matrices for symmetric and quasisymmetric Hall–Littlewood polynomials
Author/Authors :
Loehr، نويسنده , , Nicholas A. and Serrano، نويسنده , , Luis G. and Warrington، نويسنده , , Gregory S.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
We introduce explicit combinatorial interpretations for the coefficients in some of the transition matrices relating to skew Hall–Littlewood polynomials P λ / μ ( t ) and Hivertʼs quasisymmetric Hall–Littlewood polynomials G γ ( t ) . More specifically, we provide:1.
expansions of the Hall–Littlewood polynomials P λ ( t ) , the monomial quasisymmetric polynomials M α , the quasisymmetric Schur polynomials S α , and the peak quasisymmetric functions K α ;
ansion of P λ / μ ( t ) in terms of the F α ʼs.
-expansion of P λ / μ ( t ) is facilitated by introducing starred tableaux.
Keywords :
symmetric functions , Noncommutative Symmetric Functions , Quasisymmetric functions , Young tableaux , Hall–Littlewood polynomials , Standardization
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A