• Title of article

    Cayley compositions, partitions, polytopes, and geometric bijections

  • Author/Authors

    Konvalinka، نويسنده , , Matja? and Pak، نويسنده , , Igor، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2014
  • Pages
    6
  • From page
    86
  • To page
    91
  • Abstract
    In 1857, Cayley showed that certain sequences, now called Cayley compositions, are equinumerous with certain partitions into powers of 2. In this paper we give a simple bijective proof of this result and a geometric generalization to equality of Ehrhart polynomials between two convex polytopes. We then apply our results to give a new proof of Braunʼs conjecture proved recently by the authors [15].
  • Keywords
    Cayley composition , Convex polytope , Ehrhart polynomial , Bijective proof , integer partition
  • Journal title
    Journal of Combinatorial Theory Series A
  • Serial Year
    2014
  • Journal title
    Journal of Combinatorial Theory Series A
  • Record number

    1531987