Title of article :
MacWilliamsʹ Extension Theorem for bi-invariant weights over finite principal ideal rings
Author/Authors :
Greferath، نويسنده , , Marcus and Honold، نويسنده , , Thomas and Mc Fadden، نويسنده , , Cathy and Wood، نويسنده , , Jay A. and Zumbrنgel، نويسنده , , Jens، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
17
From page :
177
To page :
193
Abstract :
A finite ring R and a weight w on R satisfy the Extension Property if every R-linear w-isometry between two R-linear codes in R n extends to a monomial transformation of R n that preserves w. MacWilliams proved that finite fields with the Hamming weight satisfy the Extension Property. It is known that finite Frobenius rings with either the Hamming weight or the homogeneous weight satisfy the Extension Property. Conversely, if a finite ring with the Hamming or homogeneous weight satisfies the Extension Property, then the ring is Frobenius. aper addresses the question of a characterization of all bi-invariant weights on a finite ring that satisfy the Extension Property. Having solved this question in previous papers for all direct products of finite chain rings and for matrix rings, we have now arrived at a characterization of these weights for finite principal ideal rings, which form a large subclass of the finite Frobenius rings. We do not assume commutativity of the rings in question.
Keywords :
Mِbius function , Frobenius ring , Principal ideal ring , Linear code , extension theorem
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2014
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1532018
Link To Document :
بازگشت