Title of article :
On zero-sum subsequences of length
Author/Authors :
Gao، نويسنده , , Weidong and Han، نويسنده , , Dongchun and Peng، نويسنده , , Jiangtao and Sun، نويسنده , , Fang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
14
From page :
240
To page :
253
Abstract :
Let G be an additive finite abelian group of exponent exp ( G ) . For every positive integer k, let s k exp ( G ) ( G ) denote the smallest integer t such that every sequence over G of length t contains a zero-sum subsequence of length k exp ( G ) . We prove that if exp ( G ) is sufficiently larger than | G | exp ( G ) then s k exp ( G ) ( G ) = k exp ( G ) + D ( G ) − 1 for all k ⩾ 2 , where D ( G ) is the Davenport constant of G.
Keywords :
Zero-sum sequence , Davenport constant , Zero-sum free sequence
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2014
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1532021
Link To Document :
بازگشت