Title of article :
Topology of eigenspace posets for imprimitive reflection groups
Author/Authors :
Koonin، نويسنده , , Justin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
28
From page :
121
To page :
148
Abstract :
This paper studies the poset of eigenspaces of elements of an imprimitive unitary reflection group, for a fixed eigenvalue, ordered by the reverse of inclusion. The study of this poset is suggested by the eigenspace theory of Springer and Lehrer. The posets are shown to be isomorphic to certain subposets of Dowling lattices (the “d-divisible, k-evenly coloured Dowling lattices”). This enables us to prove that these posets are Cohen–Macaulay, and to determine the dimension of their top homology.
Keywords :
Imprimitive reflection groups , Unitary reflection groups , Exponential Dowling structures , Poset topology , Dowling lattices
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2014
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1532043
Link To Document :
بازگشت