Title of article :
Intriguing sets of , q even
Author/Authors :
Cossidente، نويسنده , , Antonio and Pavese، نويسنده , , Francesco، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
11
From page :
303
To page :
313
Abstract :
Infinite families of ( q + 1 ) -ovoids and ( q 2 + 1 ) -tight sets of the symplectic polar space W ( 5 , q ) , q even, are constructed. The ( q + 1 ) -ovoids arise from relative hemisystems of the Hermitian surface H ( 3 , q 2 ) and from certain orbits of the Suzuki group Sz ( q ) in his projective 4-dimensional representation. The tight sets are closely related to the geometry of an ovoid of W ( 3 , q ) . Other constructions of sporadic intriguing sets are also given.
Keywords :
Tight set , m-Ovoid , Ovoid , Suzuki group , Generalized quadrangle , Symplectic polar space , Relative hemisystem
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2014
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1532050
Link To Document :
بازگشت