Title of article :
Descent sets on 321-avoiding involutions and hook decompositions of partitions
Author/Authors :
Barnabei، نويسنده , , Marilena and Bonetti، نويسنده , , Flavio and Elizalde، نويسنده , , Sergi and Silimbani، نويسنده , , Matteo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
17
From page :
132
To page :
148
Abstract :
We show that the distribution of the major index over the set of involutions in S n that avoid the pattern 321 is given by the q-analogue of the n-th central binomial coefficient. The proof consists of a composition of three non-trivial bijections, one being the Robinson–Schensted correspondence, ultimately mapping those involutions with major index m into partitions of m whose Young diagram fits inside a ⌊ n 2 ⌋ × ⌈ n 2 ⌉ box. We also obtain a refinement that keeps track of the descent set, and we deduce an analogous result for the comajor index of 123-avoiding involutions.
Keywords :
Restricted involution , descent , integer partition , Major index , Lattice path
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2014
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1532061
Link To Document :
بازگشت