Title of article :
Discrepancy principle for DSM II
Author/Authors :
Ramm، نويسنده , , A.G.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
8
From page :
1256
To page :
1263
Abstract :
Let Ay = f, A is a linear operator in a Hilbert space H, y ⊥ N(A) ≔ {u : Au = 0}, R(A) ≔ {h : h = Au, u ∈ D(A)} is not closed, ∥fδ − f∥ ⩽ δ. Given fδ, one wants to construct uδ such that limδ→0∥uδ − y∥ = 0. Two versions of discrepancy principles for the DSM (dynamical systems method) for finding the stopping time and calculating the stable solution uδ to the original equation Ay = f are formulated and mathematically justified.
Keywords :
Dynamical systems method (DSM) , Discrepancy principle , Evolution Equation , Spectral Theory , ill-posed problems
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Serial Year :
2008
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Record number :
1533715
Link To Document :
بازگشت