Title of article :
Bifurcation structure of rotating wave solutions of the Fitzhugh-Nagumo equations
Author/Authors :
Alford، نويسنده , , John G.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
10
From page :
3282
To page :
3291
Abstract :
The FitzHugh-Nagumo (FHN) equations are model equations for nerve cell behavior. They support traveling wave solutions which depend on certain parameters. In this paper, a two parameter study of rotating wave solutions (i.e. periodic wavetrains) are considered. These solutions arise from bifurcations of stationary equilibria. The local bifurcation equations are analyzed to determine bifurcation directions as functions of the parameters. In addition, dependence on parameters is computed by numerical continuation and properties of the rotating wave solutions are summarized in parameter space. Finally, some of the biological implications are discussed.
Keywords :
Rotating waves , Excitable media , Bifurcation nonlinear dynamics , Biological complexity
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Serial Year :
2009
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Record number :
1534568
Link To Document :
بازگشت