• Title of article

    Adiabatic divergence of the chaotic layer width and acceleration of chaotic and noise-induced transport

  • Author/Authors

    Mark D. Soskin، نويسنده , , S.M. and Mannella، نويسنده , , R. and Yevtushenko، نويسنده , , O.M.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2010
  • Pages
    8
  • From page
    16
  • To page
    23
  • Abstract
    We show that, in spatially periodic Hamiltonian systems driven by a time-periodic coordinate-independent (AC) force, the upper energy of the chaotic layer grows unlimitedly as the frequency of the force goes to zero. This remarkable effect is absent in any other physically significant systems. It gives rise to the divergence of the rate of the spatial chaotic transport. We also generalize this phenomenon for the presence of a weak noise and weak dissipation. We demonstrate for the latter case that the adiabatic AC force may greatly accelerate the spatial diffusion and the reset rate at a given threshold.
  • Keywords
    Noise , diffusion , Threshold , Chaos , Adiabatic , transport
  • Journal title
    Communications in Nonlinear Science and Numerical Simulation
  • Serial Year
    2010
  • Journal title
    Communications in Nonlinear Science and Numerical Simulation
  • Record number

    1534780