Title of article :
Vector space classification of DNA sequences
Author/Authors :
Müller، نويسنده , , H.-M. and Koonin، نويسنده , , S.E.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
Revisiting the problem of intron–exon identification, we use a principal component analysis (PCA) to classify DNA sequences and present first results that validate our approach. Sequences are translated into document vectors that represent their word content; a principal component analysis then defines Gaussian-distributed sequence classes. The classification uses word content and variation of word usage to distinguish sequences. We test our approach with several data sets of genomic DNA and are able to classify introns and exons with an accuracy of up to 96%. We compare the method with the best traditional coding measure, the non-overlapping hexamer frequency count, and find that the PCA method produces better results. We also investigate the degree of cross-validation between different data sets of introns and exons and find evidence that the quality of a data set can be detected.
Keywords :
Intron–exon identification , genomics , Principal component analysis , gene structure , Clustering , Document vector
Journal title :
Journal of Theoretical Biology
Journal title :
Journal of Theoretical Biology