Title of article :
Painlevé property, Lax pair and Darboux transformation of the variable-coefficient modified Kortweg-de Vries model in fluid-filled elastic tubes
Author/Authors :
Gai، نويسنده , , Xiaoling and Gao، نويسنده , , Yi-Tian and Wang، نويسنده , , Lei and Meng، نويسنده , , De-Xin and Lü، نويسنده , , Xing and Sun، نويسنده , , Zhi-Yuan and Yu، نويسنده , , Xin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
With the consideration on the artery as a thin walled prestressed elastic tube with variable radius, a variable-coefficient modified Kortweg-de Vries (vc-mKdV) equation is obtained by the long wave approximation for the blood which is assumed as the incompressible non-viscous fluid. In the present paper, we firstly investigate the Painlevé property of the vc-mKdV equation. Furthermore, with the Ablowitz-Kaup-Newell-Segur procedure and symbolic computation, the Lax pair of the vc-mKdV equation is constructed, by virtue of which we construct the Darboux transformation and a new soliton solution. Finally, the features of the new solution are discussed to illustrate the influences of the constant and variable coefficients in the solitonic propagation.
Keywords :
Symbolic computation , Variable-coefficient modified Kortweg-de Vries equation , Painlevé property , Lax pair , Darboux transformation , Soliton solutions , elastic tube
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Journal title :
Communications in Nonlinear Science and Numerical Simulation