• Title of article

    Stabilization of feedback control and stabilizability optimal solution for nonlinear quadratic problems

  • Author/Authors

    Popescu، نويسنده , , Mihai and Dumitrache، نويسنده , , Alexandru، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2011
  • Pages
    9
  • From page
    2319
  • To page
    2327
  • Abstract
    This study refers to minimization of quadratic functionals in infinite time. The coefficients of the quadratic form are quadratic matrix, function of the state variable. Dynamic constraints are represented by bilinear differential systems of the form x ˙ = A ( x ) x + B ( x ) u , x ( 0 ) = x 0 . One selects an adequate factorization of A(x) such that the analyzed system should be controllable. Employing the Hamilton–Jacobi equation it results the matrix algebraic equation of Riccati associated to the optimum problem. The necessary extremum conditions determine the adjoint variables λ and the control variables u as functions of state variable, as well as the adjoint system corresponding to those functions. Thus one obtains a matrix differential equation where the solution representing the positive defined symmetric matrix P(x), verifies the Riccati algebraic equation. The stability analysis for the autonomous systems solution resulting for the determined feedback control is performed using the Liapunov function method. Finally we present certain significant cases.
  • Keywords
    Stabilization solutions , Riccati equation , Bellman’s equation , Nonlinear regulator
  • Journal title
    Communications in Nonlinear Science and Numerical Simulation
  • Serial Year
    2011
  • Journal title
    Communications in Nonlinear Science and Numerical Simulation
  • Record number

    1536037