Title of article :
Three nonlinear integrable couplings of the nonlinear Schrِdinger equations
Author/Authors :
Hui، نويسنده , , Wang and Tie-cheng، نويسنده , , Xia، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
6
From page :
4232
To page :
4237
Abstract :
Based on two types of expanding Lie algebras of a Lie algebra G, three isospectral problems are designed. Under the framework of zero curvature equation, three nonlinear integrable couplings of the nonlinear Schrِding equations are generated. With the help of variational identity, we get the Hamiltonian structure of one of them. Furthermore, we get the result that the hierarchy is also integrable in sense of Liouville.
Keywords :
Nonlinear integrable coupling , Nonlinear Schrِdinger equations , Liouville integrable hierarchy , Variational identity
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Serial Year :
2011
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Record number :
1536415
Link To Document :
بازگشت