Title of article
Three nonlinear integrable couplings of the nonlinear Schrِdinger equations
Author/Authors
Hui، نويسنده , , Wang and Tie-cheng، نويسنده , , Xia، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2011
Pages
6
From page
4232
To page
4237
Abstract
Based on two types of expanding Lie algebras of a Lie algebra G, three isospectral problems are designed. Under the framework of zero curvature equation, three nonlinear integrable couplings of the nonlinear Schrِding equations are generated. With the help of variational identity, we get the Hamiltonian structure of one of them. Furthermore, we get the result that the hierarchy is also integrable in sense of Liouville.
Keywords
Nonlinear integrable coupling , Nonlinear Schrِdinger equations , Liouville integrable hierarchy , Variational identity
Journal title
Communications in Nonlinear Science and Numerical Simulation
Serial Year
2011
Journal title
Communications in Nonlinear Science and Numerical Simulation
Record number
1536415
Link To Document