Title of article :
Existence of anti-periodic mild solutions for a class of semilinear fractional differential equations
Author/Authors :
Cao، نويسنده , , Junfei and Yang، نويسنده , , Qigui and Huang، نويسنده , , Zaitang Huang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
7
From page :
277
To page :
283
Abstract :
This work is concerned with the existence of anti-periodic mild solutions for a class of semilinear fractional differential equations x ( t ) = Ax ( t ) + D t α - 1 F ( t , x ( t ) ) , t ∈ R , 1 < α < 2, A is a linear densely defined operator of sectorial type of ω < 0 on a complex Banach space X and F is an appropriate function defined on phase space, the fractional derivative is understood in the Riemann–Liouville sense. The results obtained are utilized to study the existence of anti-periodic mild solutions to a fractional relaxation-oscillation equation.
Keywords :
Anti-periodic mild solutions , Fractional integral , Solution operator , Semilinear fractional differential equations
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Serial Year :
2012
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Record number :
1536583
Link To Document :
بازگشت