Title of article :
Integrable coupling hierarchy and Hamiltonian structure for a matrix spectral problem with arbitrary-order
Author/Authors :
Tang، نويسنده , , Yaning and Ma، نويسنده , , Wen-Xiu and Xu، نويسنده , , Wei and Gao، نويسنده , , Liang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
We presented an integrable coupling hierarchy of a matrix spectral problem with arbitrary order zero matrix r by using semi-direct sums of matrix Lie algebra. The Hamiltonian structure of the resulting integrable couplings hierarchy is established by means of the component trace identities. As an example, when r is 2 × 2 zero matrix specially, the integrable coupling hierarchy and its Hamiltonian structure of the matrix spectral problem are computed.
Keywords :
Matrix spectral problem , Integrable coupling hierarchy , Component trace identities , Hamiltonian structure
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Journal title :
Communications in Nonlinear Science and Numerical Simulation