Title of article :
Structure of magnetic field lines
Author/Authors :
Asadi-Golmankhaneh، Mohammad Ali نويسنده Assistant Prof. Mathematics Department, Urmia University , , Ali Khalili and Golmankhaneh، نويسنده , , Alireza Khalili and Jazayeri، نويسنده , , Seyed Masud and Baleanu، نويسنده , , Dumitru، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
8
From page :
713
To page :
720
Abstract :
In this paper the Hamiltonian structure of magnetic lines is studied in many ways. First it is used vector analysis for defining the Poisson bracket and Casimir variable for this system. Second it is derived Pfaffian equations for magnetic field lines. Third, Lie derivative and derivative of Poisson bracket is used to show structure of this system. Finally, it is shown Nambu structure of the magnetic field lines.
Keywords :
Forms , Lie derivative , Magnetic surfaces , Nambu mechanics , Non-integrable systems , exterior derivative , integrable systems
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Serial Year :
2012
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Record number :
1536678
Link To Document :
بازگشت