Title of article :
Quenching for a reaction–diffusion equation with nonlinear memory
Author/Authors :
Zhou، نويسنده , , Shouming and Mu، نويسنده , , Chunlai and Du، نويسنده , , Qingling and Zeng، نويسنده , , Rong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
10
From page :
754
To page :
763
Abstract :
This paper is devoted to study the quenching phenomenon for a reaction–diffusion equation with nonlinear memory subject to positive Dirichlet boundary condition, u t = Δ u - α u - p ∫ 0 t u - q ( x , s ) ds . where p ⩾ 0, q, α > 0. The local existence and uniqueness of the solution are proved, moreover, there exists a critical length α∗ such that the solution quenches in finite time for α ⩾ α∗, and the blow-up of time-derivatives at the quenching point is verified. Under appropriate hypotheses, the quenching rate estimates are given. Finally, some numerical experiments are performed which illustrate our results.
Keywords :
Reaction–diffusion equation , Nonlinear memory , quenching rate , quenching
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Serial Year :
2012
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Record number :
1536688
Link To Document :
بازگشت