Title of article :
Exact solutions of a novel integrable partial differential equation
Author/Authors :
Conde، نويسنده , , Juan M. and Gordoa، نويسنده , , Pilar R. and Pickering، نويسنده , , Andrew، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
We consider the derivation of exact solutions of a novel integrable partial differential equation (PDE). This equation was introduced with the aim that it mirror properties of the second Painlevé equation (PII), and it has the remarkable property that, in addition to the usual kind of auto-Bäcklund transformation that one would expect of an integrable PDE, it also admits an auto-Bäcklund transformation of ordinary differential equation (ODE) type, i.e., a mapping between solutions involving shifts in coefficient functions, and which is an exact analogue of that of PII with its shift in parameter.
ly three methods of obtaining exact solutions. First of all we consider the Lie symmetries of our PDE, this leading to a variety of solutions including in terms of the second Painlevé transcendent, elliptic functions and hyperbolic functions. Our second approach involves the use of our ODE-type auto-Bäcklund transformation applied to solutions arising as solutions of an equation analogous to the special integral of PII. It turns out that our PDE has a second remarkable property, namely, that special functions defined by any linear second order ODE can be used to obtain a solution of our PDE. In particular, in the case of solutions defined by Bessel’s equation, iteration using our ODE-type auto-Bäcklund transformation is possible and yields a chain of solutions defined in terms of Bessel functions. We also consider the use of this transformation in order to derive solutions rational in x. Finally, we consider the standard auto-Bäcklund transformation, obtaining a nonlinear superposition formula along with one- and two-soliton solutions. Velocities are found to depend on coefficients appearing in the equation and this leads to a wide range of interesting behaviours.
Keywords :
Nonlinear superposition , exact solutions , Bنcklund transformations
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Journal title :
Communications in Nonlinear Science and Numerical Simulation