Title of article :
Darboux transformation and soliton solutions for the coupled cubic-quintic nonlinear Schrِdinger equations in nonlinear optics
Author/Authors :
Qi ، نويسنده , , Feng-Hua and Tian، نويسنده , , Bo and Lü، نويسنده , , Xing and Guo، نويسنده , , Rui and Xue، نويسنده , , Yu-Shan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
10
From page :
2372
To page :
2381
Abstract :
In this paper, by virtue of the Darboux transformation (DT) and symbolic computation, the quintic generalization of the coupled cubic nonlinear Schrِdinger equations from twin-core nonlinear optical fibers and waveguides are studied, which describe the effects of quintic nonlinearity on the ultrashort optical pulse propagation in non-Kerr media. Lax pair of the equations is obtained and the corresponding DT is constructed. Moreover, one-, two- and three-soliton solutions are presented in the forms of modulus. Features of solitons are graphically discussed: (1) head-on and overtaking elastic collisions of the two solitons; (2) periodic attraction and repulsion of the bounded states of two solitons; (3) energy-exchanging collisions of the three solitons.
Keywords :
Darboux transformation , Soliton solutions , Symbolic computation , Quintic generalization of the coupled cubic nonlinear Schrِdinger equation
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Serial Year :
2012
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Record number :
1537007
Link To Document :
بازگشت