• Title of article

    The complex effect of granulocyte colony-stimulating factor on human granulopoiesis analyzed by a new physiologically-based mathematical model

  • Author/Authors

    Vainstein، نويسنده , , V. and Ginosar، نويسنده , , Y. and Shoham، نويسنده , , M. and Ranmar، نويسنده , , D.O. and Ianovski، نويسنده , , A. and Agur، نويسنده , , Z.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2005
  • Pages
    17
  • From page
    311
  • To page
    327
  • Abstract
    Neutropenia, frequently a side effect of chemo- and radiotherapy, increases susceptibility to microbial infections and is a life-threatening condition. For realistically predicting drug treatment effects on granulopoiesis, we have constructed a new mathematical model of granulopoiesis in the bone marrow and in the peripheral blood, featuring cell cycle phase transition and detailed granulocyte-colony stimulating factor (G-CSF) pharmacokinetics (PK) and pharmacodynamics (PD), including intracellular second messenger. Using this model, in conjunction with clinical results, we evaluated the system parameters, implemented those in the model and successfully retrieved the results of several independent clinical experiments under a wide range of G-CSF regimens. Our results show that the introduction of G-CSF-controlled intracellular second messenger is indispensable for precise retrieval of the clinical results, and suggest that the half-life of this messenger varies between a single and multiple G-CSF administration schedules. In addition, our model provided reliable steady-state, as well as dynamic, estimations of human granulopoiesis parameters. These included an estimation of apoptosis index in the post-mitotic compartment, which corroborates previous results. At present the model is used for suggesting improved drug regimens.
  • Keywords
    Granulopoiesis , G-csf , Mathematical model
  • Journal title
    Journal of Theoretical Biology
  • Serial Year
    2005
  • Journal title
    Journal of Theoretical Biology
  • Record number

    1537008