• Title of article

    Jacobi zeta function and action-angle coordinates for the pendulum

  • Author/Authors

    Brizard، نويسنده , , Alain J.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2013
  • Pages
    8
  • From page
    511
  • To page
    518
  • Abstract
    The Jacobi elliptic functions and integrals play a defining role in analytically describing the motion of the planar pendulum. In the present paper, the Jacobi zeta function is given the physical interpretation as the generating function of the canonical transformation from the pendulum coordinates ϑ and p ≡ ∂ ϑ / ∂ t to the action-angle coordinates ( J , ζ ) for both the librating pendulum and the rotating pendulum.
  • Keywords
    Planar pendulum , Action-angle coordinates , Jacobi elliptic functions , Generating function for canonical transformation
  • Journal title
    Communications in Nonlinear Science and Numerical Simulation
  • Serial Year
    2013
  • Journal title
    Communications in Nonlinear Science and Numerical Simulation
  • Record number

    1537643