Title of article
Jacobi zeta function and action-angle coordinates for the pendulum
Author/Authors
Brizard، نويسنده , , Alain J.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2013
Pages
8
From page
511
To page
518
Abstract
The Jacobi elliptic functions and integrals play a defining role in analytically describing the motion of the planar pendulum. In the present paper, the Jacobi zeta function is given the physical interpretation as the generating function of the canonical transformation from the pendulum coordinates ϑ and p ≡ ∂ ϑ / ∂ t to the action-angle coordinates ( J , ζ ) for both the librating pendulum and the rotating pendulum.
Keywords
Planar pendulum , Action-angle coordinates , Jacobi elliptic functions , Generating function for canonical transformation
Journal title
Communications in Nonlinear Science and Numerical Simulation
Serial Year
2013
Journal title
Communications in Nonlinear Science and Numerical Simulation
Record number
1537643
Link To Document