Title of article :
Centers on center manifolds in the Lorenz, Chen and Lü systems
Author/Authors :
Algaba، نويسنده , , Antonio and Fernلndez-Sلnchez، نويسنده , , Fernando and Merino، نويسنده , , Manuel and Rodrيguez-Luis، نويسنده , , Alejandro J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
4
From page :
772
To page :
775
Abstract :
We provide in a very straightforward manner a proof for the existence of centers on center manifolds, for the generalized Lorenz system, x ̇ = a ( y - x ) , y ̇ = bx + cy - xz , z ̇ = dz + xy . From this result, the presence of this Hopf bifurcation of codimension infinity is trivially deduced for the Lorenz, Chen and Lü systems. Our outcomes are novel for the Lorenz and Chen systems and, in the case of the Lü system, we obtain again, but in an easier way, the result found in the literature. Moreover, we show for this Hopf bifurcation a relationship between the three systems.
Keywords :
Generalized Lorenz system , center , center manifold , Invariant algebraic surface , Hopf bifurcation
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Serial Year :
2014
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Record number :
1538331
Link To Document :
بازگشت