Title of article :
Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor
Author/Authors :
Kuznetsov، نويسنده , , N.V. and Mokaev، نويسنده , , T.N. and Vasilyev، نويسنده , , P.A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
8
From page :
1027
To page :
1034
Abstract :
Exact Lyapunov dimension of attractors of many classical chaotic systems (such as Lorenz, Henon, and Chirikov systems) is obtained. While exact Lyapunov dimension for Rössler system is not known, Leonov formulated the following conjecture: Lyapunov dimension of Rössler attractor is equal to local Lyapunov dimension in one of its stationary points. In the present work Leonov’s conjecture on Lyapunov dimension of various Rössler systems with standard parameters is checked numerically.
Keywords :
Lyapunov dimension , strange attractor , R?ssler system , Lyapunov Exponent , Chaos , Leonov’s conjecture
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Serial Year :
2014
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Record number :
1538376
Link To Document :
بازگشت