Title of article :
Traveling waves, impulses and diffusion chaos in excitable media
Author/Authors :
Karamysheva، نويسنده , , T.V. and Magnitskii، نويسنده , , N.A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
4
From page :
1742
To page :
1745
Abstract :
In the present work it is shown, that the FitzHugh–Nagumo type system of partial differential equations with fixed parameters can have an infinite number of different stable wave solutions, traveling along the space axis with arbitrary speeds, and also traveling impulses and an infinite number of different states of spatiotemporal (diffusion) chaos. Those solutions are generated by cascades of bifurcations of cycles and singular attractors according to the FSM theory (Feigenbaum–Sharkovskii–Magnitskii) in the three-dimensional system of ordinary differential equations (ODEs), to which the FitzHugh–Nagumo type system of equations with self-similar change of variables can be reduced.
Keywords :
Excitable medium , Traveling waves , FSM theory , spatiotemporal chaos , Impulses
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Serial Year :
2014
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Record number :
1538499
Link To Document :
بازگشت