Title of article :
Numerical solutions of boundary value problems for variable coefficient generalized KdV equations using Lie symmetries
Author/Authors :
Vaneeva، نويسنده , , O.O. and Papanicolaou، نويسنده , , N.C. and Christou، نويسنده , , M.A. and Sophocleous، نويسنده , , C.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
12
From page :
3074
To page :
3085
Abstract :
The exhaustive group classification of a class of variable coefficient generalized KdV equations is presented, which completes and enhances results existing in the literature. Lie symmetries are used for solving an initial and boundary value problem for certain subclasses of the above class. Namely, the found Lie symmetries are applied in order to reduce the initial and boundary value problem for the generalized KdV equations (which are PDEs) to an initial value problem for nonlinear third-order ODEs. The latter problem is solved numerically using the finite difference method. Numerical solutions are computed and the vast parameter space is studied.
Keywords :
numerical solutions , boundary value problems , KdV equations , Equivalence transformations , Lie symmetries
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Serial Year :
2014
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Record number :
1538734
Link To Document :
بازگشت