Title of article :
Central and local limit theorems for RNA structures
Author/Authors :
Jin، نويسنده , , Emma Y. and Reidys، نويسنده , , Christian M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
13
From page :
547
To page :
559
Abstract :
A k-noncrossing RNA pseudoknot structure is a graph over { 1 , … , n } without 1-arcs, i.e. arcs of the form ( i , i + 1 ) and in which there exists no k-set of mutually intersecting arcs. In particular, RNA secondary structures are 2-noncrossing RNA structures. In this paper we prove a central and a local limit theorem for the distribution of the number of 3-noncrossing RNA structures over n nucleotides with exactly h bonds. Our analysis employs the generating function of k-noncrossing RNA pseudoknot structures and the asymptotics for the coefficients. The results of this paper explain the findings on the number of arcs of RNA secondary structures obtained by molecular folding algorithms and are of relevance for prediction algorithms of k-noncrossing RNA structures.
Keywords :
k-noncrossing RNA structure , generating function , Central Limit Theorem , Singularity , Local limit theorem , pseudoknot
Journal title :
Journal of Theoretical Biology
Serial Year :
2008
Journal title :
Journal of Theoretical Biology
Record number :
1539132
Link To Document :
بازگشت