Title of article :
A new geometric biclustering algorithm based on the Hough transform for analysis of large-scale microarray data
Author/Authors :
Zhao، نويسنده , , Hongya and Liew، نويسنده , , Alan Wee-Chung and Xie، نويسنده , , Xudong and Yan، نويسنده , , Hong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
11
From page :
264
To page :
274
Abstract :
Biclustering is an important tool in microarray analysis when only a subset of genes co-regulates in a subset of conditions. Different from standard clustering analyses, biclustering performs simultaneous classification in both gene and condition directions in a microarray data matrix. However, the biclustering problem is inherently intractable and computationally complex. In this paper, we present a new biclustering algorithm based on the geometrical viewpoint of coherent gene expression profiles. In this method, we perform pattern identification based on the Hough transform in a column-pair space. The algorithm is especially suitable for the biclustering analysis of large-scale microarray data. Our studies show that the approach can discover significant biclusters with respect to the increased noise level and regulatory complexity. Furthermore, we also test the ability of our method to locate biologically verifiable biclusters within an annotated set of genes.
Keywords :
Biclustering , Gene expression profiles , Microarray data analysis , The Hough transform
Journal title :
Journal of Theoretical Biology
Serial Year :
2008
Journal title :
Journal of Theoretical Biology
Record number :
1539173
Link To Document :
بازگشت