Title of article :
Statistics of canonical RNA pseudoknot structures
Author/Authors :
Huang، نويسنده , , Fenix W.D. and Reidys، نويسنده , , Christian M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
In this paper we study canonical RNA pseudoknot structures. We prove central limit theorems for the distributions of the arc-numbers of k-noncrossing RNA structures with given minimum stack-size τ over n nucleotides. Furthermore we compare the space of all canonical structures with canonical minimum free energy pseudoknot structures. Our results generalize the analysis of Schuster et al. obtained for RNA secondary structures [Hofacker, I.L., Schuster, P., Stadler, P.F., 1998. Combinatorics of RNA secondary structures. Discrete Appl. Math. 88, 207–237; Jin, E.Y., Reidys, C.M., 2007b. Central and local limit theorems for RNA structures. J. Theor. Biol. 250 (2008), 547–559; 2007a. Asymptotic enumeration of RNA structures with pseudoknots. Bull. Math. Biol., 70 (4), 951–970] to k-noncrossing RNA structures. Here k ⩾ 2 and τ are arbitrary natural numbers. We compare canonical pseudoknot structures to arbitrary structures and show that canonical pseudoknot structures exhibit significantly smaller exponential growth rates. We then compute the asymptotic distribution of their arc-numbers. Finally, we analyze how the minimum stack-size and crossing number factor into the distributions.
Keywords :
k-noncrossing RNA structure , Singularity analysis , Central Limit Theorem , D-finite
Journal title :
Journal of Theoretical Biology
Journal title :
Journal of Theoretical Biology