• Title of article

    In silico leaf venation networks: Growth and reorganization driven by mechanical forces

  • Author/Authors

    Corson، نويسنده , , Francis and Adda-Bedia، نويسنده , , Mokhtar and Boudaoud، نويسنده , , Arezki، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2009
  • Pages
    9
  • From page
    440
  • To page
    448
  • Abstract
    Development commonly involves an interplay between signaling, genetic expression and biophysical forces. However, the relative importance of these mechanisms during the different stages of development is unclear. Leaf venation networks provide a fitting context for the examination of these questions. In mature leaves, venation patterns are extremely diverse, yet their local structure satisfies a universal property: at junctions between veins, angles and diameters are related by a vectorial equation analogous to a force balance. Using a cell proliferation model, we reproduce in silico the salient features of venation patterns. Provided that vein cells are given different mechanical properties, tensile forces develop along the veins during growth, causing the network to deform progressively. Our results suggest that the local structure of venation networks results from a reorganization driven by mechanical forces, independently of how veins form. This conclusion is supported by recent observations of vein development in young leaves and by the good quantitative agreement between our simulations and data from mature leaves.
  • Keywords
    plant development , Mechanical stress
  • Journal title
    Journal of Theoretical Biology
  • Serial Year
    2009
  • Journal title
    Journal of Theoretical Biology
  • Record number

    1539772