Title of article :
Kernel density estimation of actuarial loss functions
Author/Authors :
Bolancé، نويسنده , , Catalina and Guillen، نويسنده , , Montserrat and Nielsen، نويسنده , , Jens Perch، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
18
From page :
19
To page :
36
Abstract :
In this paper we estimate actuarial loss functions based on a symmetrized version of the semiparametric transformation approach to kernel smoothing. We apply this method to an actuarial study of automobile claims. The method gives a good overall impression while estimating actuarial loss functions, since it is capable of estimating both the initial mode and the heavy tail that is so typical for actuarial and other economic loss distributions. We study the properties of the transformation kernel density estimation and show the differences with the multiplicative bias corrected estimator. We add insight into the kernel smoothing transformation method through an extensive simulation study with a particular view to the performance of the estimation at the tail.
Keywords :
Actuarial loss models , Transformation , Skewness , Weighted integrated squared error
Journal title :
Insurance Mathematics and Economics
Serial Year :
2003
Journal title :
Insurance Mathematics and Economics
Record number :
1542567
Link To Document :
بازگشت