Title of article :
On the geometry of the smallest circle enclosing a finite set of points
Author/Authors :
Drager، نويسنده , , Lance D. and Lee، نويسنده , , Jeffrey M. and Martin، نويسنده , , Clyde F.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
12
From page :
929
To page :
940
Abstract :
A number of numerical codes have been written for the problem of finding the circle of smallest radius in the Euclidean plane that encloses a finite set P of points, but these do not give much insight into the geometry of this circle. We investigate geometric properties of the minimal circle that may be useful in the theoretical analysis of applications. We show that a circle C enclosing P is minimal if and only if it is rigid in the sense that it cannot be translated while still enclosing P. We show that the center of the minimal circle is in the convex hull of P. We use this rigidity result and an analysis of the case of three points to find sharp estimates on the diameter of the minimal circle in terms of the diameter of P.
Keywords :
Smallest enclosing circle
Journal title :
Journal of the Franklin Institute
Serial Year :
2007
Journal title :
Journal of the Franklin Institute
Record number :
1543163
Link To Document :
بازگشت