Title of article :
The residual-based ESG algorithm and its performance analysis
Author/Authors :
Xiao، نويسنده , , Yongsong and Wang، نويسنده , , Dongqing and Ding، نويسنده , , Feng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
12
From page :
426
To page :
437
Abstract :
The performance of the residual-based extended stochastic gradient (ESG) algorithms for identifying CARMA models with disturbances is analyzed under weaker conditions on statistical properties of the noise. The paper derives the conditions under which the parameter estimation errors converge to zero. Three examples are given to show the advantages of the proposed algorithm.
Keywords :
Stochastic approximation , Recursive identification , Parameter estimation , Convergence properties , Stochastic gradient
Journal title :
Journal of the Franklin Institute
Serial Year :
2010
Journal title :
Journal of the Franklin Institute
Record number :
1543516
Link To Document :
بازگشت