Title of article :
Decentralized neural identification and control for uncertain nonlinear systems: Application to planar robot
Author/Authors :
Tellez، نويسنده , , Fernando Ornelas and Loukianov، نويسنده , , Alexander G. and Sanchez، نويسنده , , Edgar N. and Jose Bayro Corrochano، نويسنده , , Eduardo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
20
From page :
1015
To page :
1034
Abstract :
This paper presents a discrete-time decentralized neural identification and control for large-scale uncertain nonlinear systems, which is developed using recurrent high order neural networks (RHONN); the neural network learning algorithm uses an extended Kalman filter (EKF). The discrete-time control law proposed is based on block control and sliding mode techniques. The control algorithm is first simulated, and then implemented in real time for a two degree of freedom (DOF) planar robot.
Keywords :
sliding modes , Identification , NEURAL NETWORKS , EKF , Decentralized systems
Journal title :
Journal of the Franklin Institute
Serial Year :
2010
Journal title :
Journal of the Franklin Institute
Record number :
1543624
Link To Document :
بازگشت