• Title of article

    On the Higson corona of uniformly contractible spaces

  • Author/Authors

    A. N. Dranishnikov، نويسنده , , A.N. and Keesling، نويسنده , , J. and Uspenskij، نويسنده , , V.V.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1998
  • Pages
    13
  • From page
    791
  • To page
    803
  • Abstract
    Let X be a proper metric space and let νX be its Higson corona. We prove that the covering dimension of νX does not exceed the asymptotic dimension asdimX of X introduced by M. Gromov. In particular, it implies that dim νRn = n for euclidean and hyperbolic metrics on Rn. We prove that for finitely generated groups Γ′ ⊃ Γ with word metrics the inequality dim νΓ′ ⩽ dim νΓ holds. Also we prove that a small action at infinity of a geometrically finite group Γ on some compactification X′ of the universal covering space X = EΓ enables one to map the Higson compactification onto X′. In that case the rational acyclicity of X′ implies the conjecture by S. Weinberger for X which is a form of the Novikov Conjecture for Γ.
  • Journal title
    Topology
  • Serial Year
    1998
  • Journal title
    Topology
  • Record number

    1544850