Title of article
On the Higson corona of uniformly contractible spaces
Author/Authors
A. N. Dranishnikov، نويسنده , , A.N. and Keesling، نويسنده , , J. and Uspenskij، نويسنده , , V.V.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1998
Pages
13
From page
791
To page
803
Abstract
Let X be a proper metric space and let νX be its Higson corona. We prove that the covering dimension of νX does not exceed the asymptotic dimension asdimX of X introduced by M. Gromov. In particular, it implies that dim νRn = n for euclidean and hyperbolic metrics on Rn. We prove that for finitely generated groups Γ′ ⊃ Γ with word metrics the inequality dim νΓ′ ⩽ dim νΓ holds. Also we prove that a small action at infinity of a geometrically finite group Γ on some compactification X′ of the universal covering space X = EΓ enables one to map the Higson compactification onto X′. In that case the rational acyclicity of X′ implies the conjecture by S. Weinberger for X which is a form of the Novikov Conjecture for Γ.
Journal title
Topology
Serial Year
1998
Journal title
Topology
Record number
1544850
Link To Document