Title of article :
A counterexample to the (unstable) Gromov–Lawson–Rosenberg conjecture
Author/Authors :
Schick، نويسنده , , Thomas، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
4
From page :
1165
To page :
1168
Abstract :
Doing surgery on the 5-torus, we construct a five-dimensional closed spin-manifold M with π1(M)≅Z4×Z/3, so that the index invariant in the KO-theory of the reduced C∗-algebra of π1(M) is zero. Then we use the theory of minimal surfaces of Schoen/Yau to show that this manifold cannot carry a metric of positive scalar curvature. The existence of such a metric is predicted by the (unstable) Gromov–Lawson–Rosenberg conjecture.
Journal title :
Topology
Serial Year :
1998
Journal title :
Topology
Record number :
1544877
Link To Document :
بازگشت