Title of article :
Annular and boundary reducing Dehn fillings
Author/Authors :
Gordon ، نويسنده , , Cameron McA. and Wu، نويسنده , , Ying-Qing، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
18
From page :
531
To page :
548
Abstract :
Let M be a simple 3-manifold, i.e. one that contains no essential sphere, disk, annulus or torus, with a torus boundary component ∂0M. One is interested in obtaining upper bounds for the distance (intersection number) Δ(α, β) between slopes α, β on ∂0M such that Dehn filling M along α, β produces manifolds M(α), M(β) that are not simple. There are ten cases, according to whether M(α) (M(β)) contains an essential sphere, disk, annulus or torus. Here we show that if M(α) contains an essential annulus and M(β) contains an essential disk then Δ(α, β)⩽2. This completes the determination of upper bounds for Δ(α, β) in all ten cases.
Keywords :
3-Manifolds , Dehn fillings , annular , Boundary reducing
Journal title :
Topology
Serial Year :
2000
Journal title :
Topology
Record number :
1545164
Link To Document :
بازگشت