Title of article :
The coarse Baum–Connes conjecture and groupoids
Author/Authors :
Adonis Skandalis، نويسنده , , G. and Tu، نويسنده , , Jay J.L and Yu، نويسنده , , G.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
28
From page :
807
To page :
834
Abstract :
To every discrete metric space with bounded geometry X we associate a groupoid G(X) for which the coarse assembly map for X is equivalent to the Baum–Connes assembly map for G(X) with coefficients in the C∗-algebra ℓ∞(X,K). We thus obtain a new proof of the fact that if X admits a uniform embedding into Hilbert space, the coarse assembly map is an isomorphism. If furthermore X is a discrete group Γ with a translation-invariant metric, we show, using Higsonʹs descent technique, that Γ also satisfies the Novikov conjecture. This removes the finiteness condition in (Yu, Invent. Math. 139 (2000) 201–204).
Keywords :
Groupoid , Coarse geometry , Baum–Connes conjecture
Journal title :
Topology
Serial Year :
2002
Journal title :
Topology
Record number :
1545335
Link To Document :
بازگشت