Title of article :
ةtale descent for real number fields
Author/Authors :
طstvوr، نويسنده , , Paul Arne، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
In this paper we verify the strong Quillen–Lichtenbaum conjecture for integers in real number fields at the prime two. That is, we prove that the Dwyer–Friedlander map from mod 2 algebraic K-theory to mod 2 étale topological K-theory is a weak equivalence on zero-connected covers for two integers in real number fields. The proof is given by comparing two explicit calculations.
Keywords :
Galois module structure on units and Picard groups , Homotopy fixed point spectral sequence , Quillen–Lichtenbaum conjectures at the prime two (positive) étale cohomology