Title of article :
Vassiliev invariants and the Poincaré conjecture
Author/Authors :
Eisermann، نويسنده , , Michael، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
19
From page :
1211
To page :
1229
Abstract :
This article examines the relationship between 3-manifold topology and knot invariants of finite type. We prove that in every Whitehead manifold there exist knots that cannot be distinguished by Vassiliev invariants. If, on the other hand, Vassiliev invariants distinguish knots in each homotopy sphere, then the Poincaré conjecture is true (i.e. every homotopy 3-sphere is homeomorphic to the standard 3-sphere).
Keywords :
Poincaré conjecture , Knots in a 3-manifold , Vassiliev invariant , Whitehead manifold , Knot invariant of finite type
Journal title :
Topology
Serial Year :
2004
Journal title :
Topology
Record number :
1545465
Link To Document :
بازگشت