Title of article :
Exponential iterated integrals and the relative solvable completion of the fundamental group of a manifold
Author/Authors :
Miller، نويسنده , , Carl، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
23
From page :
351
To page :
373
Abstract :
We develop a class of integrals on a manifold M called exponential iterated integrals, an extension of K.T. Chenʹs iterated integrals. It is shown that the matrix entries of any upper triangular representation of π 1 ( M , x ) can be expressed via these new integrals. The ring of exponential iterated integrals contains the coordinate rings for a class of universal representations, called the relative solvable completions of π 1 ( M , x ) . We consider exponential iterated integrals in the particular case of fibered knot complements, where the fundamental group always has a faithful relative solvable completion.
Keywords :
Iterated integrals , Algebraic completions , Fundamental groups
Journal title :
Topology
Serial Year :
2005
Journal title :
Topology
Record number :
1545494
Link To Document :
بازگشت