Title of article :
Invariant fibrations of geodesic flows
Author/Authors :
Butler، نويسنده , , Leo T. Chylack Jr، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
Let ( Σ , g ) be a compact C 2 finslerian 3-manifold. If the geodesic flow of g is completely integrable, and the singular set is a tamely-embedded polyhedron, then π 1 ( Σ ) is almost polycyclic. On the other hand, if Σ is a compact, irreducible 3-manifold and π 1 ( Σ ) is infinite polycyclic while π 2 ( Σ ) is trivial, then Σ admits an analytic riemannian metric whose geodesic flow is completely integrable and singular set is a real-analytic variety. Additional results in higher dimensions are proven.
Keywords :
Liouville foliations , 3-Manifolds , Geodesic flows , integrable systems , Nonintegrability , Momentum map