Author/Authors :
Dru?u، نويسنده , , Cornelia and Sapir، نويسنده , , Mark، نويسنده ,
Abstract :
We introduce a concept of tree-graded metric space and we use it to show quasi-isometry invariance of certain classes of relatively hyperbolic groups, to obtain a characterization of relatively hyperbolic groups in terms of their asymptotic cones, to find geometric properties of Cayley graphs of relatively hyperbolic groups, and to construct the first example of a finitely generated group with a continuum of non- π 1 -equivalent asymptotic cones. Note that by a result of Kramer, Shelah, Tent and Thomas, continuum is the maximal possible number of different asymptotic cones of a finitely generated group, provided that the Continuum Hypothesis is true.