Title of article :
The symmetric form of the Koekoeksʹ Laguerre type differential equation
Author/Authors :
Everitt، نويسنده , , W.N. and Littlejohn، نويسنده , , L.L. and Wellman، نويسنده , , R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Pages :
7
From page :
115
To page :
121
Abstract :
Koekoek and Koekoek (1991) proved that the Laguerre type polynomials {Lnα,N(x)}n=0∞, which are orthogonal on [0,∞) with respect to the measure dσα,N defined on [0,∞) by dσα,N(x) = (xαexΓ(α + 1) + Nδ(x))dx, satisfy a differential equation L2α+4,N[y][x] = λny(x) of order 2α + 4 when α is a nonnegative integer. In this paper, we announce that the differential expression L2α+4,N[·] is symmetrizable on (0, ∞) with symmetry factor xαe−x and explicitly give this formally symmetric expression xαe−xL2α+4,N[y].
Keywords :
Symmetry equations , Symmetry factors , Symmetrizable differential expressions , Laguerre type polynomials , Formally symmetric differential expressions
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
1995
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1545777
Link To Document :
بازگشت