Title of article :
Extremal problems for ordered (hyper)graphs: applications of Davenport–Schinzel sequences
Author/Authors :
Klazar، نويسنده , , Martin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
16
From page :
125
To page :
140
Abstract :
We introduce a containment relation of hypergraphs which respects linear orderings of vertices, and we investigate associated extremal functions. We extend, using a more generally applicable theorem, the nlog n upper bound on sizes of ({1,3},{1,5},{2,3},{2,4})-free ordered graphs with n vertices, due to Füredi, to the n(log n)2(log log n)3 upper bound in the hypergraph case. We apply Davenport–Schinzel sequences and obtain almost linear upper bounds in terms of the inverse Ackermann function α(n). For example, we obtain such bounds in the case of extremal functions of forests consisting of stars all of whose centres precede all leaves.
Journal title :
European Journal of Combinatorics
Serial Year :
2004
Journal title :
European Journal of Combinatorics
Record number :
1545863
Link To Document :
بازگشت