Title of article :
Generalized statistics on Sn and pattern avoidance
Author/Authors :
Regev، نويسنده , , Amitai and Roichman، نويسنده , , Yuval، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
29
From page :
29
To page :
57
Abstract :
Natural q analogues of classical statistics on the symmetric groups Sn are introduced; parameters like: the q-length, the q-inversion number, the q-descent number and the q-major index. Here q is a positive integer. MacMahon’s theorem (Combinatory Analysis I–II (1916)) about the equi-distribution of the inversion number and the reverse major index is generalized to all positive integers q. It is also shown that the q-inversion number and the q-reverse major index are equi-distributed over subsets of permutations avoiding certain patterns. Natural q analogues of the Bell and the Stirling numbers are related to these q statistics—through the counting of the above pattern-avoiding permutations.
Journal title :
European Journal of Combinatorics
Serial Year :
2005
Journal title :
European Journal of Combinatorics
Record number :
1545876
Link To Document :
بازگشت