Title of article :
Hodge-Laplace Operator on Compact Manifolds from Which a Finite Number of Balls Is Omitted
Author/Authors :
Anne ، نويسنده , , C. and Colbois، نويسنده , , B.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1993
Pages :
22
From page :
190
To page :
211
Abstract :
We study here the convergence of eigenvalues and eigenforms of the Laplace operator Δ = (dδ + δd) acting on differential forms in the perturbation obtained by omitting a finite number of little balls on a compact Riemannian manifold M. We restrict ourselves to absolute boundary conditions by duality and show the convergence except at degree (dim(M) − 1) where new harmonic forms and one small eigenvalue appear on the perturbed manifold.
Journal title :
Journal of Functional Analysis
Serial Year :
1993
Journal title :
Journal of Functional Analysis
Record number :
1545913
Link To Document :
بازگشت